Kiyotomi Kaneda of Osaka University devised
(Angew. Chem. Int. Ed. 2010, 49, 5545.
DOI: 10.1002/anie.201001055)
gold nanoparticles that efficiently deoxygenated an
epoxide 1 to the alkene 2. Robert G. Bergman of the University of
California, Berkeley and Jonathan A. Ellman, now of Yale University, reported
(J. Am. Chem. BuyMethyl 5-bromo-6-fluoropicolinate Soc. 2010, 132, 11408.
DOI: 10.1021/ja103436v)
a related protocol for deoxygenating 1,2-diols. Dennis A. Dougherty of Caltech established
(Org. Lett. PMID:24118276 2010, 12, 3990.
DOI: 10.1021/ol1015493)
that an acid chloride 3 could be reduced to the phosphonate 4.

Pei-Qiang Huang of Xiamen University effected
(Synlett 2010, 1829.
DOI: 10.1055/s-0030-1258111)
reduction of an amide 5 by activation with Tf2O followed
by reduction with
NaBH4. André B. Charette of the Université de
Montreal described
(J. Am. 5-Ethynyluridine site Chem. Soc. 2010, 132, 12817.
DOI: 10.1021/ja105194s)
parallel results with Tf2O/Et3SiH. David Milstein of the
Weizmann Institute of Science devised
(J. Am. Chem. Soc. 2010, 132, 16756.
DOI: 10.1021/ja1080019)
a Ru catalyst for the alternative reduction of an amide 7
to the amine 8 and the alcohol 9.

Shi-Kai Tian of the University of Science and Technology of China effected
(Chem. Commun. 2010, 46, 6180.
DOI: 10.1039/C0CC00765J)
reduction of a benzylic sulfonamide 10 to the hydrocarbon 11.
Thirty years ago, S. Yamamura of Nagoya University reported
(Chem. Commun. 1967, 1049.
DOI: 10.1039/C19670001049)
the efficient reduction of a ketone to the corresponding methylene with Zn/HCl.
Hirokazu Arimoto of Tohoku University established
(Tetrahedron Lett. 2010, 51, 4534.
DOI: 10.1016/j.tetlet.2010.06.102)
that a modified Zn/TMSCl protocol could be used following
ozonolysis
to effect conversion of an alkene 12 to the methylene 13.

José Barluenga and Carlos Valdés of the Universidad de Oviedo effected
(Angew. Chem. Int. Ed. 2010, 49, 4993.
DOI: 10.1002/anie.201001704)
reduction of a ketone to the ether 16 by way of the tosylhydrazone 14.
Kyoko Nozaki and Makoto Yamashita of the University of Tokyo and Dennis P. Curran
of the University of Pittsburgh found
(J. Am. Chem. Soc. 2010, 132, 11449.
DOI: 10.1021/ja105277u)
that the hydride 18 (actually a complex dimer) could effect the direct
reduction of a halide 17, and also function as the hydrogen atom donor
for free radical reduction, and as the hydride donor for the Pd-mediated
reduction of an aryl halide.

Masayuki Inoue, also of the University of Tokyo used
(Org. Lett. 2010, 12, 4195.
DOI: 10.1021/ol1018079)
Cl3CCN to promote
MCPBA oxidation of an ether 20 to the ketone 21. Kandikere Ramaiah Prabhu of the Indian
Institute of Technology, Bangalore oxidized
(Angew. Chem. Int. Ed. 2010, 49, 6622.
DOI: 10.1002/anie.201002635)
a primary azide 22 to the nitrile 23 using commercial aqueous

t-BuOOH. Debashis Chakraborty of the Indian
Institute of Technology, Madras found
(Tetrahedron Lett. 2010, 51, 3521.
DOI: 10.1016/j.tetlet.2010.04.101)
that commercial aqueous t-BuOOH could also be used to
oxidize an aldehyde 24 to the acid 25. Masahito Ochiai of the
University of Tokushima and Waro Nakanishi of Wakayama University devised
(J. Am. Chem. Soc. 2010, 132, 9236.
DOI: 10.1021/ja104330g)
the reagent 26 to effect oxidation of the aldehyde 24
to the Baeyer-Villiger product 27.

Jonathan M. J. Williams of the University of Bath used
(Org. Lett. 2010, 12, 5096.
DOI: 10.1021/ol101978h)
hydroxylamine to oxidize an aldehyde 28 to the
amide 30. Jörg Sedelmeier, Steven V. Ley and Marcus Baumann of the
University of Cambridge established
(Org. Lett. 2010, 12, 3618.
DOI: 10.1021/ol101345z)
that flow conditions could be used to oxidize a nitro derivative 31
to the aldehyde 32, or (not illustrated) to the corresponding carboxylic
acid or (from a secondary nitro) the ketone.