Peter Legzdins of the University of British Columbia has described (J. Formula of 273930-54-4 Am. Chem. Soc. 2007, 129, 5372.DOI: 10.1021/ja0713633)a stoichiometric tungsten complex that specifically functionalized the primary H of an alkane 1 to give the organometallic 2. Neither the scope of the reactivity of 2 nor the functional group compatibility of this process have as yet been explored. Price of 7-Chloro-L-tryptophan
Ruggero Curci of the Università di Bari has reported (Tetrahedron Lett. 2007, 48, 3575.DOI: 10.1016/j.tetlet.2007.03.101)the stereospecific hydroxylation of 1,3-dimethyl cyclohexane 4 to the diol 6. Yasuyuki Kita of Osaka University has developed (Org. Lett. 2007, 9, 3129.DOI: 10.1021/ol071315n)conditions for specific benzylic oxidation, converting 7 into 8 with high diastereocontrol. Larry E. Overman of the University of California, Irvine has established (Org. Lett. PMID:23937941 2007, 9, 5267.DOI: 10.1021/ol702518t)that by using a slow H-atom donor, it was possible to effect intramolecular H abstraction, leading, by oxidation of the intermediate captodatively-stabilized radical, from 9 to the acetate 10.
The target C-H of 9 is activated by being adjacent to the ring nitrogen. There are many other ways that nitrogen, easily oxidized, has been used to activate a C-H for bond formation. Takehiko Yoshimitsu and Tetsuaki Tanaka of Osaka University have established (Org. Lett. 2007, 9, 5115. DOI: 10.1021/ol7023295)a free-radical route for the homologation of a tertiary amine such as 11 with phenyl isocyanate 12. Chuan He of the University of Chicago has devised (Angew. Chem. Int. Ed. 2007, 46, 5184.DOI: 10.1002/anie.200700760)an Ag catalyst for the oxidative cyclization of sulfamates such as 15. M. Christina White of the University of Illinois has developed (J. Am. Chem. Soc. 2007, 129, 7274.DOI: 10.1021/ja071905g)a ligand system that allows the diastereoselective Pd-mediated allylic oxidation of 16 to 17.
The cyclization of 18 to 19 developed (J. Org. Chem. 2007, 72, 8994.DOI: 10.1021/jo7016982)by Renhua Fan of Fudan University is thought to be proceeding via H atom abstraction by an intermediate nitrogen radical. The oxidation of the amine 20 to the endocyclic enamine 21 reported (J. Am. Chem. Soc. 2007, 129, 14544. DOI: 10.1021/ja075694r)by Maurice Brookhart of the University of North Carolina depended on the ease of oxidative addition of an intermediate alkenyl Co complex into the C-H bond adjacent to the nitrogen. The multistep cyclization of 22 to 23 devised (Org. Lett. 2007, 9, 4375.DOI: 10.1021/ol702017t)by Philippe Renaud of the Universität Bern depended on the ease of H atom abstraction adjacent to nitrogen.
Carbon-carbon bonds can also be established by C-H functionalization. Justin Du Bois of Stanford University has shown (Org. Lett. 2007, 9, 4363. DOI: 10.1021/ol701950d)that sulfonates such as 24 can be cyclized to the sultone with high diastereocontrol. Kálmán J. Szabó of Stockholm University has found (Angew. Chem. Int. Ed. 2007, 46, 6891.DOI: 10.1002/anie.200702499)that depending on conditions, either the alkenyl (illustrated) or the allylic C-H of a cycloalkene such as 27 can be activated for bond formation. Maurizio Fagnoni of the University of Pavia has delineated conditions (Angew. Chem. Int. Ed. 2007, 46, 6495.DOI: 10.1002/anie.200701462)for direct biphenyl formation from easily oxidized aromatics such as 31 bearing leaving groups. Gerhard Hilt of the Philipps-Universität Marburg has established (Angew. Chem. Int. Ed. 2007, 46, 8500.DOI: 10.1002/anie.200703180)a Co catalyst for the efficient Alder ene homologation of a terminal alkene 34 to the unsaturated ester 36.